By Topic

High-level synthesis for the design of FPGA-based signal processing systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Casseau, E. ; INRIA/IRISA, ENSSAT, Univ. de Rennes 1, Lannion, France ; Le Gal, B.

High-level synthesis (HLS) currently seems to be an interesting process to reduce the design time substantially. HLS tools actually map algorithms to architectures. While such tools were developed targeting ASIC technologies, HLS currently draws wide interest for FPGA designers. However with most of HLS techniques, traditional resource sharing models are very inaccurate for FPGAs: for example, multiplexers can be very expensive with such technologies. Resource usage optimizations and dedicated resource binding have to be applied. In this paper a HLS process which takes care of data-width and combines scheduling and binding to carefully take into account interconnect cost is presented. Experimental results show that our approach achieves significant reduction for area (34%) and dynamic power (28%) compared to a traditional synthesis.

Published in:

Systems, Architectures, Modeling, and Simulation, 2009. SAMOS '09. International Symposium on

Date of Conference:

20-23 July 2009