By Topic

Scalable I/O forwarding framework for high-performance computing systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

9 Author(s)
Nawab Ali ; The Ohio State University, Columbus, Ohio 43210 ; Philip Carns ; Kamil Iskra ; Dries Kimpe
more authors

Current leadership-class machines suffer from a significant imbalance between their computational power and their I/O bandwidth. While Moore's law ensures that the computational power of high-performance computing systems increases with every generation, the same is not true for their I/O subsystems. The scalability challenges faced by existing parallel file systems with respect to the increasing number of clients, coupled with the minimalistic compute node kernels running on these machines, call for a new I/O paradigm to meet the requirements of data-intensive scientific applications. I/O forwarding is a technique that attempts to bridge the increasing performance and scalability gap between the compute and I/O components of leadership-class machines by shipping I/O calls from compute nodes to dedicated I/O nodes. The I/O nodes perform operations on behalf of the compute nodes and can reduce file system traffic by aggregating, rescheduling, and caching I/O requests. This paper presents an open, scalable I/O forwarding framework for high-performance computing systems. We describe an I/O protocol and API for shipping function calls from compute nodes to I/O nodes, and we present a quantitative analysis of the overhead associated with I/O forwarding.

Published in:

2009 IEEE International Conference on Cluster Computing and Workshops

Date of Conference:

Aug. 31 2009-Sept. 4 2009