By Topic

Weak signal detection in hyperspectral imagery using sparse matrix transform (smt) covariance estimation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Guangzhi Cao ; Sch. of Electr. & Comput. Eng., Purdue Univ., West Lafayette, IN, USA ; Bouman, C.A. ; Theiler, J.

Many detection algorithms in hyperspectral image analysis, from well-characterized gaseous and solid targets to deliberately uncharacterized anomalies and anomalous changes, depend on accurately estimating the covariance matrix of the background. In practice, the background covariance is estimated from samples in the image, and imprecision in this estimate can lead to a loss of detection power. In this paper, we describe the sparse matrix transform (SMT) and investigate its utility for estimating the covariance matrix from a limited number of samples. The SMT is formed by a product of pairwise coordinate (Givens) rotations. Experiments on hyperspectral data show that the estimate accurately reproduces even small eigenvalues and eigenvectors. In particular, we find that using the SMT to estimate the covariance matrix used in the adaptive matched filter leads to consistently higher signal-to-clutter ratios.

Published in:

Hyperspectral Image and Signal Processing: Evolution in Remote Sensing, 2009. WHISPERS '09. First Workshop on

Date of Conference:

26-28 Aug. 2009