By Topic

Energy consumption and message delay analysis of QoS enhanced base station controlled dynamic clustering protocol for wireless sensor networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

The purchase and pricing options are temporarily unavailable. Please try again later.
2 Author(s)
Abraham O. Fapojuwo ; Dept. of Electr. & Comput. Eng., Univ. of Calgary, Calgary, AB, Canada ; Alejandra Cano-Tinoco

This paper proposes and analyzes a Quality of service enhanced Base station Controlled Dynamic Clustering Protocol (QBCDCP), suitable for the support of video and imaging traffic over resource constrained wireless sensor nodes. The protocol achieves energy efficiency through a rotating head clustering approach and delegation of energy-intensive tasks to a high-power base station, while providing quality of service (QoS) support by including delay and bandwidth parameters in the route selection process. A Time Division Multiple Access (TDMA) scheme is used for intra- and intercluster communication, providing bandwidth reservation. Performance of QBCDCP is evaluated in terms of energy consumption and end-to-end image delay via analytical and discrete-event simulation techniques. Numerical results provide insights on the selection of network parameters such as number of clusters that improve the sensing node lifetime while maintaining high quality of service. The results also demonstrate the trade-off between end-to-end image delay and sensor node lifetime.

Published in:

IEEE Transactions on Wireless Communications  (Volume:8 ,  Issue: 10 )