Cart (Loading....) | Create Account
Close category search window

The effect of confinement on the stability of field induced states and on supercooling in antiferro-ferroelectric phase transitions in chiral smectic liquid crystals

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Song, Jang-Kun ; Department of Electronic and Electrical Engineering, Trinity College, University of Dublin, Dublin 2, Ireland ; Vij, J.K.

Your organization might have access to this article on the publisher's site. To check, click on this link: 

We investigate both the supercooling and the hysteresis phenomena of the phase transitions between the smectic C* and the smectic CA* phases driven by temperature and electric field, respectively. These two phenomena show similar characteristics for the dependence of transmittance on both the cell thickness and the applied field. The mechanisms for large supercooling and large hysteresis in thin cells are shown to correspond to the suppression of the propagation of solitary wave by the surfaces. Furthermore, these two phenomena are shown to be controlled by a moderate ac field applied across the cell. We present a clear evidence for the existence of at least two field induced subphases (called states here) between the antiferroelectric and the ferroelectric phases. These are found to correspond to the field induced three-layered and four-layered structures through a comparison of experimental results on the tilt angle and its simulation as well as by discrete changes in the texture by increasing the electric field. The correspondence between the thermotropic phases and the field induced states is demonstrated through measurements of the supercooling/superheating and of the hysteresis as a function of the cell thickness. The instability in the field induced states depends strongly on the cell thickness, and the various states are not observed in a cell of 1.6 μm thickness.

Published in:

Journal of Applied Physics  (Volume:106 ,  Issue: 7 )

Date of Publication:

Oct 2009

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.