By Topic

Localization and Recovery of Peripheral Neural Sources With Beamforming Algorithms

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Brian Wodlinger ; Biomed. Eng. Dept., Case Western Reserve Univ., Cleveland, OH, USA ; Dominique M. Durand

The peripheral nervous system carries sensory and motor information that could be useful as command signals for function restoration in areas such as neural prosthetics and functional electrical stimulation (FES). Nerve cuff electrodes provide a robust and safe technique for recording nerve signals. However, a method to separate and recover signals from individual fascicles is necessary. Prior knowledge of the electrode geometry was used to develop an algorithm which assumes neither signal independence nor detailed knowledge of the nerve's geometry/conductivity, and is applicable to any wide-band near-field situation. When used to recover fascicular activities from simulated nerve cuff recordings in a realistic human femoral nerve model, this beamforming algorithm separates signals as close as 1.5 mm with cross-correlation coefficient, R > 0.9 (10% noise). Ten simultaneous signals could be recovered from individual fascicles with only a 20% decrease in R compared to a single signal. At high noise levels (40%), sources were localized to 180 plusmn 170 mum in the 12 times 3 mm cuff. Localizing sources and using the resulting positions in the recovery algorithm yielded R = 0.66 plusmn 0.10 in 10% noise for five simultaneous muscle-activation signals from synergistic fascicles. These recovered signals should allow natural, robust, closed-loop control of multiple degree-of-freedom prosthetic devices and FES systems.

Published in:

IEEE Transactions on Neural Systems and Rehabilitation Engineering  (Volume:17 ,  Issue: 5 )