Cart (Loading....) | Create Account
Close category search window
 

A Dynamic En-route Filtering Scheme for Data Reporting in Wireless Sensor Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Zhen Yu ; Dept. of Electr. & Comput. Eng., Iowa State Univ., Ames, IA, USA ; Guan, Yong

In wireless sensor networks, adversaries can inject false data reports via compromised nodes and launch DoS attacks against legitimate reports. Recently, a number of filtering schemes against false reports have been proposed. However, they either lack strong filtering capacity or cannot support highly dynamic sensor networks very well. Moreover, few of them can deal with DoS attacks simultaneously. In this paper, we propose a dynamic en-route filtering scheme that addresses both false report injection and DoS attacks in wireless sensor networks. In our scheme, each node has a hash chain of authentication keys used to endorse reports; meanwhile, a legitimate report should be authenticated by a certain number of nodes. First, each node disseminates its key to forwarding nodes. Then, after sending reports, the sending nodes disclose their keys, allowing the forwarding nodes to verify their reports. We design the hill climbing key dissemination approach that ensures the nodes closer to data sources have stronger filtering capacity. Moreover, we exploit the broadcast property of wireless communication to defeat DoS attacks and adopt multipath routing to deal with the topology changes of sensor networks. Simulation results show that compared to existing solutions, our scheme can drop false reports earlier with a lower memory requirement, especially in highly dynamic sensor networks.

Published in:

Networking, IEEE/ACM Transactions on  (Volume:18 ,  Issue: 1 )

Date of Publication:

Feb. 2010

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.