By Topic

Local Control Lyapunov Functions for Constrained Linear Discrete-Time Systems: The Minkowski Algebra Approach

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Raković, S.V. ; Inst. for Autom. Eng., Otto-von-Guericke-Univ., Magdeburg, Germany ; Barić, M.

This technical note utilizes Minkowski algebra of convex sets to characterize a family of local control Lyapunov functions for constrained linear discrete-time systems. Local control Lyapunov functions are induced by parametrized contractive invariant sets. Underlying contractive invariant sets belong to a family of Minkowski decomposable convex sets and are, in fact, parametrized by a basic shape set and linear transformations of system matrices and a set of design matrices. Corresponding local control Lyapunov functions can be detected by solving a single, tractable, convex optimization problem which in case of polyhedral constraints reduces to a single linear program. The a priori complexity estimate of the characterized local control Lyapunov function is provided for some practically relevant cases. An illustrative example and relevant numerical experience are also reported.

Published in:

Automatic Control, IEEE Transactions on  (Volume:54 ,  Issue: 11 )