Cart (Loading....) | Create Account
Close category search window
 

Channel Modeling for Multiple Satellite Broadcasting Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Milojević, M. ; Commun. Res. Lab., Ilmenau Univ. of Technol., Ilmenau, Germany ; Haardt, M. ; Eberlein, E. ; Heuberger, A.

In this contribution we present the results of a study on land mobile satellite channel models for satellite systems with multiple satellites. The slow fading of our channel model for several satellites is based on a Markov channel state model for joint processes while the probability density function (PDF) of the signal amplitude within each state is fitted to the Loo distribution. The correlation between two satellite channels and the channel spatial autocorrelation have also been studied. We show that a channel state model that uses a Markov state model of order one or of a fixed higher order is not appropriate if the state duration is of very high importance, which can be the case in the process of system planning. Therefore, we propose a dynamic higher order Markov state model for joint processes that depends on the current state duration. This approach models precisely any PDF of the channel state duration for both single and multiple satellite broadcasting systems while having a significantly lower computational complexity than a fixed higher order Markov model. It models the channel states of the whole system correctly, as well as the channel states of each satellite observed independently. It is able to capture the state correlation between multiple satellites. We also study possible approximations of the proposed models in order to reduce their computational complexity while having a good PDF match. Our channel state models are validated by measurements.

Published in:

Broadcasting, IEEE Transactions on  (Volume:55 ,  Issue: 4 )

Date of Publication:

Dec. 2009

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.