By Topic

Recommendations in Online Discussion Forums for E-Learning Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

The purchase and pricing options are temporarily unavailable. Please try again later.
6 Author(s)
Abel, F. ; IVS-Semantic Web Group, Leibniz Univ. of Hannover, Hannover, Germany ; Bittencourt, I.I. ; Costa, E. ; Henze, N.
more authors

In this paper, we outline the importance of discussion fora for e-learning applications. Due to a weak structure or size of the discussion forum, recommendations are required in order to help learners finding relevant information within a forum. We present a generic personalization framework and evaluate the framework based on a recommender architecture for the e-learning focused discussion forum Comtella-D. In the evaluation, we examine different sources of user feedback and the required amount of user interaction to provide recommendations. The outcomes of the evaluation serve as source for a personalization rule, which selects the most appropriate recommendation strategy based on available user input data. We furthermore conclude that collaborative filtering techniques can be utilize successfully in small data sets, like e-learning related discussion fora.

Published in:

Learning Technologies, IEEE Transactions on  (Volume:3 ,  Issue: 2 )