By Topic

Turbo decoding of product codes using adaptive belief propagation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Jego, C. ; Electron. Eng. Dept., Univ. Europeenne de Bretagne, Brest, France ; Gross, W.J.

The adaptive belief propagation (ABP) algorithm was recently proposed by Jiang and Narayanan for the soft decoding of Reed-Solomon (RS) codes. In this paper, simplified versions of this algorithm are investigated for the turbo decoding of product codes. The complexity of the turbo-oriented adaptive belief propagation (TAB) algorithm is significantly reduced by moving the matrix adaptation step outside of the belief propagation iteration loop. A reduced-complexity version of the TAB algorithm that offers a trade-off between performance and complexity is also proposed. Simulation results for the turbo decoding of product codes show that belief propagation based on adaptive parity check matrices is a practical alternative to the currently very popular Chase-Pyndiah algorithm.

Published in:

Communications, IEEE Transactions on  (Volume:57 ,  Issue: 10 )