By Topic

Performance of channel coded noncoherent systems: modulation choice, information rate, and Markov chain Monte Carlo detection

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Rong-Rong Chen ; Dept. of Electr. & Comput. Eng., Univ. of Utah, Salt Lake City, UT, USA ; Ronghui Peng

This paper investigates performance of channel coded noncoherent systems over block fading channels. We consider an iterative system where an outer channel code is serially concatenated with an inner modulation code amenable to noncoherent detection. We emphasize that, in order to obtain near-capacity performance, the information rates of modulation codes should be close to the channel capacity. For certain modulation codes, a single-input single-output (SISO) system with only one transmit antenna may outperform a dual-input and single-output (DISO) system with two transmit antennas. This is due to the intrinsic information rate loss of these modulation codes compared to the DISO channel capacity. We also propose a novel noncoherent detector based on Markov Chain Monte Carlo (MCMC). Compared to existing detectors, the MCMC detector achieves comparable or superior performance at reduced complexity. The MCMC detector does not require explicit amplitude or phase estimation of the channel fading coefficient, which makes it an attractive candidate for high rate communication employing quadrature amplitude modulation (QAM) and for multiple antenna channels. At transmission rates of 1 ~ 1.667 bits/sec/Hz, the proposed SISO systems employing 16QAM and MCMC detection perform within 1.6-2.3 dB of the noncoherent channel capacity achieved by optimal input.

Published in:

Communications, IEEE Transactions on  (Volume:57 ,  Issue: 10 )