Cart (Loading....) | Create Account
Close category search window
 

Probabilistic call admission control in wireless multiservice networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Stratogiannis, D.G. ; Sch. of Electr. & Comput. Eng., Nat. Tech. Univ. of Athens, Athens, Greece ; Tsiropoulos, G.I. ; Kanellopoulos, J.D. ; Cottis, P.G.

A new probabilistic call admission control scheme is proposed for multiservice wireless networks. The new scheme gradually suppresses the admission rate of the new calls and of the calls of each service class (SC) supported considering their priorities independently. The scheme is examined both for a single SC and for multiple SCs under general conditions. The analysis employs Markov chain theory and yields analytical expressions for the call blocking probabilities. The proposed analytical method was validated via simulations employing different distributions for the channel holding time; the simulations demonstrated the accuracy of the proposed framework.

Published in:

Communications Letters, IEEE  (Volume:13 ,  Issue: 10 )

Date of Publication:

October 2009

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.