By Topic

Toward a Germanium Laser for Integrated Silicon Photonics

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Sun, Xiaochen ; Microphotnics Center, Massachusetts Inst. of Technol., Cambridge, MA, USA ; Jifeng Liu ; Kimerling, L.C. ; Michel, J.

It has been demonstrated theoretically and experimentally that germanium, with proper strain engineering and n-type doping, can be an efficient light emitter and a gain medium at its direct bandgap within the third optical communication window ( ~1520-1620 nm). In this paper, we systematically discuss the effect of strain, doping, and temperature on the direct-gap optical gain in germanium. For electrically pumped devices, properties and design guidelines of Ge/Si heterojunction are also analyzed and compared with the results from fabricated Ge/Si heterojunction LEDs.

Published in:

Selected Topics in Quantum Electronics, IEEE Journal of  (Volume:16 ,  Issue: 1 )