Scheduled System Maintenance:
On May 6th, single article purchases and IEEE account management will be unavailable from 8:00 AM - 12:00 PM ET (12:00 - 16:00 UTC). We apologize for the inconvenience.
By Topic

Sparse equalization for real-time digital underwater acoustic communications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Kocic, M. ; Dept. of Electr. & Comput. Eng., Northeastern Univ., Boston, MA, USA ; Brady, D. ; Stojanovic, M.

Due to the very long reverberation time of many ocean channels, the size of the adaptive filters required for conventional equalization becomes large, rendering the computational complexity of the adaptive receiver unacceptable for many cases of practical interest. To overcome this problem we exploit the natural sparseness of the reverberation pattern. By focusing only on those intervals which contain a significant portion of the signal energy, the sparse equalization method provides data detection using a minimum complexity adaptive receiver subject to an upper bound on the signal estimation error. Experimental results demonstrate an order of magnitude reduction in computational complexity with a negligible loss in performance

Published in:

OCEANS '95. MTS/IEEE. Challenges of Our Changing Global Environment. Conference Proceedings.  (Volume:3 )

Date of Conference:

9-12 Oct 1995