By Topic

Incremental Adaptive Spam Mail Filtering Using Naïve Bayesian Classification

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Taninpong, P. ; Dept. of Comput. Sci., Mahidol Univ., Bangkok, Thailand ; Ngamsuriyaroj, S.

Most content based spam filters are rule based or trained off-line. Handling new spam tactics is difficult and prone to high misclassification rate. This paper proposes an incremental adaptive spam mail filtering using Naiumlve Bayesian classification which gives good performance, simplicity and adaptability. We model an incremental scheme that receives a stream of emails, and applies the concept of sliding window to train only the last w emails for testing new incoming messages. Subsequently, the new features of tested messages are added to the existing features so that the model will be adaptive to future incoming emails. The proposed model is tested on two corpora: Trec05p-1 and Trec06p. The parameters are the window size and the number of features, and the evaluation metrics are the processing time per message, and the ham and spam misclassification rates. The experimental results show that the number of features has little impact whereas the window size has significant effects on misclassification rates and the processing time. In addition, the overall accuracy is even better than that obtained from the batch off-line training and the processing time is reduced significantly.

Published in:

Software Engineering, Artificial Intelligences, Networking and Parallel/Distributed Computing, 2009. SNPD '09. 10th ACIS International Conference on

Date of Conference:

27-29 May 2009