By Topic

Sensor signal processing to extract features from finger temperature in a case-based stress classification scheme

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Begum, S. ; Sch. of Innovation, Design & Eng., Malardalen Univ., Vasteras, Sweden

One of the physiological parameters for quantifying stress levels is the finger temperature that helps the clinician in diagnosis and treatment of stress. However, this pattern of the finger temperature sensor signal is so individual and in practice, it is difficult and tedious even for experienced clinicians to interpret and analyze the signal to classify individual stress levels. So there is an inherent need to develop methods or techniques providing computational solution to utilize this sensor signal in a computer-based system. This paper presents a feature extraction approach based on finger temperature sensor signal. The extracted features are then used to formulate cases in a case-based reasoning system to classify individual sensitivity to stress. The evaluation result shows an encouraging performance to apply the approach in feature extraction from slowly changing sensor signals such as finger temperature signal.

Published in:

Intelligent Signal Processing, 2009. WISP 2009. IEEE International Symposium on

Date of Conference:

26-28 Aug. 2009