By Topic

A data mining approach to strategy prediction

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Weber, B.G. ; Expressive Intell. Studio, Univ. of California, Santa Cruz, Santa Cruz, CA, USA ; Mateas, M.

We present a data mining approach to opponent modeling in strategy games. Expert gameplay is learned by applying machine learning techniques to large collections of game logs. This approach enables domain independent algorithms to acquire domain knowledge and perform opponent modeling. Machine learning algorithms are applied to the task of detecting an opponent's strategy before it is executed and predicting when an opponent will perform strategic actions. Our approach involves encoding game logs as a feature vector representation, where each feature describes when a unit or building type is first produced. We compare our representation to a state lattice representation in perfect and imperfect information environments and the results show that our representation has higher predictive capabilities and is more tolerant of noise. We also discuss how to incorporate our data mining approach into a full game playing agent.

Published in:

Computational Intelligence and Games, 2009. CIG 2009. IEEE Symposium on

Date of Conference:

7-10 Sept. 2009