By Topic

Fuzzy Q-learning in a nondeterministic environment: developing an intelligent Ms. Pac-Man agent

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Lori L. DeLooze ; United States Naval Academy, Annapolis MD 21402 USA ; Wesley R. Viner

This paper reports the results from training an intelligent agent to play the Ms. Pac-Man video game using variations of a fuzzy Q-learning algorithm. This approach allows us to address the nondeterministic aspects of the game as well as finding a successful self-learning or adaptive playing strategy. The strategy presented is a table based learning strategy, in which the intelligent agent analyzes the current situation of the game, stores various membership values for each of the several contributors to the situation (distance to closest pill, distance to closest power pill, and distance to closest ghost), and makes decisions based on these values.

Published in:

2009 IEEE Symposium on Computational Intelligence and Games

Date of Conference:

7-10 Sept. 2009