By Topic

Nontechnical Loss Detection for Metered Customers in Power Utility Using Support Vector Machines

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Nagi, J. ; Power Eng. Centre (PEC), Univ. Tenaga Nasional, Kajang, Malaysia ; Yap, K.S. ; Sieh Kiong Tiong ; Ahmed, S.K.
more authors

Electricity consumer dishonesty is a problem faced by all power utilities. Finding efficient measurements for detecting fraudulent electricity consumption has been an active research area in recent years. This paper presents a new approach towards nontechnical loss (NTL) detection in power utilities using an artificial intelligence based technique, support vector machine (SVM). The main motivation of this study is to assist Tenaga Nasional Berhad (TNB) Sdn. Bhd. in peninsular Malaysia to reduce its NTLs in the distribution sector due to abnormalities and fraud activities, i.e., electricity theft. The fraud detection model (FDM) developed in this research study preselects suspected customers to be inspected onsite fraud based on irregularities in consumption behavior. This approach provides a method of data mining, which involves feature extraction from historical customer consumption data. This SVM based approach uses customer load profile information and additional attributes to expose abnormal behavior that is known to be highly correlated with NTL activities. The result yields customer classes which are used to shortlist potential suspects for onsite inspection based on significant behavior that emerges due to fraud activities. Model testing is performed using historical kWh consumption data for three towns within peninsular Malaysia. Feedback from TNB Distribution (TNBD) Sdn. Bhd. for onsite inspection indicates that the proposed method is more effective compared to the current actions taken by them. With the implementation of this new fraud detection system TNBD's detection hitrate will increase from 3% to 60%.

Published in:

Power Delivery, IEEE Transactions on  (Volume:25 ,  Issue: 2 )