By Topic

Adaptive Vibration Cancellation for Tire-Road Friction Coefficient Estimation on Winter Maintenance Vehicles

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Erdogan, G. ; Dept. of Mech. Eng., Univ. of Minnesota, Minneapolis, MN, USA ; Alexander, L. ; Rajamani, R.

This paper focuses on the development and experimental evaluation of a novel adaptive feedforward vibration cancellation based friction estimation system. The friction estimation utilizes a small instrumented redundant wheel on the vehicle. Unlike other systems previously documented in literature, the developed system can provide a continuous measurement of the friction coefficient under all vehicle maneuvers, even when the longitudinal and lateral accelerations are both zero. A key challenge in the development of the estimation system is the need to remove the influence of vibrations and the influence of vehicle maneuvers from the measured signal of a force sensor. An adaptive feedforward algorithm based on the use of accelerometer signals as reference inputs is developed. The parameters of the feedforward model estimated by the adaptive algorithm themselves serve to determine the value of the friction coefficient. At the same time, the influence of vibrations and of vehicle maneuvers is removed. Detailed experimental results are presented on a skid pad wherein the road surface changes from dry asphalt to ice. Results are presented at different speeds and with and without lateral and longitudinal maneuvers. Excellent performance is obtained in estimation of the friction coefficient. The performance of the adaptive feedforward algorithm is shown to be significantly superior to that of a simple cross-correlation based algorithm for friction estimation.

Published in:

Control Systems Technology, IEEE Transactions on  (Volume:18 ,  Issue: 5 )