By Topic

Design of a terabit free-space photonic backplane for parallel computing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Szymanski, T. ; McGill Univ., Montreal, Que., Canada ; Hinton, H.S.

The design of a terabit free-space photonic backplane for parallel computing and communications is described. The backplane consists of a large number of parallel reconfigurable optical channels spaced a few hundred microns apart. The parallel channels are organized as a unidirectional ring and the channel access protocols are implemented by smart pixel arrays. Smart pixel arrays are integrated optoelectronic devices with optical I/O and with electronic processing capabilities. The design of a 32×32 smart pixel array which supports multiple reconfigurable broadcast channels and interfaces between tens of Gb/s of electrical data and hundreds of Gb/s of optical data is proposed. The photonic backplane interconnects 32 printed circuit boards (PCBs) and has a bisection bandwidth of 1 terabit/sec (Tb/s), with each PCB receiving a bandwidth of 32 Gb/s. The backplane can be dynamically reconfigured to support 1024 broadcast channels at 1 Gb/s, 32 broadcast channels at 32 Gb/s, or many intermediate values. The backplane can also embed arbitrary graphs, including meshes, hypercubes, shuffles, etc. Smart pixel arrays are currently being fabricated using AT&T's Hybrid SEED process, and a demonstration of the architecture interconnecting 4 PCBs is planned for the fall of 1995

Published in:

Massively Parallel Processing Using Optical Interconnections, 1995., Proceedings of the Second International Conference on

Date of Conference:

23-24 Oct 1995