By Topic

On Discovering Community Trends in Social Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)

Real-world social networks (e.g., blogosphere) often evolve over time and thus poses challenges on conventional social network analysis techniques which model the underlying networks as static graphs. In this paper, we are interested in detecting dynamic communities and their trend of evolution in a social network by examining the structural and dynamic patterns of interactions. In doing so, we propose an iterative mining algorithm for computing the intensities and bursts of some hidden communities over time. Our method is probabilistic in nature and can be applied to both undirected graphs and directed graphs. Quantitative and qualitative performance comparisons between the proposed method and some representative methods for social network analysis are provided. Evaluation results based on three benchmark datasets, including Reuters terror news network, political blogosphere, and Enron emails, show that the proposed method is both effective and efficient.

Published in:

Web Intelligence and Intelligent Agent Technologies, 2009. WI-IAT '09. IEEE/WIC/ACM International Joint Conferences on  (Volume:1 )

Date of Conference:

15-18 Sept. 2009