By Topic

Effective Keyword Search for Software Resources Installed in Large-Scale Grid Infrastructures

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $33
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)

In this paper, we investigate the problem of supporting keyword-based searching for the discovery of software resources that are installed on the nodes of large-scale, federated Grid computing infrastructures. We address a number of challenges that arise from the unstructured nature of software and the unavailability of software-related metadata on Grid sites. We present Minersoft, a Grid harvester that visits Grid sites, crawls their file-systems, identifies and classifies software resources, and discovers implicit associations between them. The results of Minersoft harvesting are encoded in a weighted, typed graph, named the Software Graph. A number of IR algorithms are used to enrich this graph with structural and content associations, to annotate software resources with keywords, and build inverted indexes to support keyword-based searching for software. Using a real testbed, we present an evaluation study of our approach, using data extracted from a production-quality Grid infrastructure. Experimental results show that our approach achieves high search efficiency.

Published in:

Web Intelligence and Intelligent Agent Technologies, 2009. WI-IAT '09. IEEE/WIC/ACM International Joint Conferences on  (Volume:1 )

Date of Conference:

15-18 Sept. 2009