By Topic

Analysis of structures and surface states of the nanodiamond particle synthesised by detonation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $33
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Q. Zou ; State Key Laboratory of Metastable Materials Science and Technology, Yanshan University ; M. Z. Wang ; Y. G. Li ; L. H. Zou
more authors

Various apparatus were used to analyse the structures and the surface states of the nanodiamond particles synthesised by detonation, including a high-resolution transmission electron microscope (HRTEM), an energy diffraction spectrometer (EDS), an X-ray diffractometer (XRD), a Raman spectrometer (Raman), a Fourier transform infrared spectrometer (FTIR) and a differential scanning calorimeter (DSC). The grain size of the nanodiamond particles was in the range of 2-12-nm. However, the average grain size was approximately 5-nm. Moreover, the shapes of the nanodiamond particles were spherical or elliptical. The nanodiamond as-synthesised was very pure, which almost contained carbon only. The contents of the impurity element including O, N and S were very small, which came from the synthesis and purification processes when fabricating the nanodiamond. The surfaces of the nanodiamond particles absorbed many functional groups, such as hydroxy, carbonyl, carboxyl and ether-based resin. The initial oxidation temperature of the nanodiamond powder in air was about 520degC, which was lower than that of the bulk diamond. However, the oxidation temperature of the nanographite existing in the nanodiamond powder was about 228degC. The graphitisation temperature of the nanodiamond in Ar gas was approximately 1305degC.

Published in:

IET Micro & Nano Letters  (Volume:4 ,  Issue: 3 )