By Topic

Novel scanning immersion lithography (SIL) for 3D microfabrication

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Sheu, H.C. ; Facility Utilization Group, Nat. Synchrotron Radiat. Res. Center, Hsinchu, Taiwan ; Shew, B.Y. ; Liu, C.W. ; Peng, C.T.
more authors

We propose the first time combining the merit of scanning and immersion lithography to fabricate 3D microstructure in this study. Via applying a matching liquid to reduce the diffraction error, the gap between the mask/resist becomes more tolerable. In addition, the liquid also act as a lubricant and a buffer for smooth movement of the mask/substrate. These advantages will benefit the performance of scanning lithography technique. The experimental results show that the large-area, 3D microstructure with excellent surface quality (Ravg<10 nm) can be successively fabricated based on this method. Besides, 3D microstructures with various geometries and functionalities can be generated by altering the shape of the mask pattern, or changing the scanning directions. The proposed SIL technique seems to be a promising way for fabricating 3D microstructure for optical applications.

Published in:

Solid-State Sensors, Actuators and Microsystems Conference, 2009. TRANSDUCERS 2009. International

Date of Conference:

21-25 June 2009