By Topic

A latchable paraffin actuated high-pressure microfluidic valve

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Ogden, S. ; Dept. of Eng. Sci., Uppsala Univ., Uppsala, Sweden ; Boden, R. ; Hjort, K.

In this paper, the strongest yet latchable valve in sub-cm3 size for microfluidic applications is presented. The device has an integrated actuator cavity consisting of three segments filled with paraffin and operated by separate heaters. At one of the segments, a membrane valve head is deflected from the expansion of the resistively melted paraffin to close against its valve seat. Different heating sequences provide a latched closed or opened valve. The maximum pressure before any leakage occurred was 1.3 MPa. At higher pressures the leakage increases until the valve is fully open at 2.3 MPa. The valve has an opening and closing time of 9 and 1 s, respectively. At an applied pressure of 0.3 MPa, the closed valve needs to be reactivated every 100 min to remain leakage free, leading to an average power consumption of 4 mW.

Published in:

Solid-State Sensors, Actuators and Microsystems Conference, 2009. TRANSDUCERS 2009. International

Date of Conference:

21-25 June 2009