By Topic

A tree-search algorithm for ML decoding in underdetermined MIMO systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Gianmarco Romano ; Dipartimento di Ingegneria dell'Informazione, Seconda Università di Napoli, via Roma 29, 81031 Aversa, Italy ; Francesco Palmieri ; Pierluigi Salvo Rossi ; Davide Mattera

It is well known that maximum likelihood (ML) detection for multiantenna and/or multiuser systems has complexity that grows exponentially with the number of antennas and/or users. A number of suboptimal algorithms has been developed in the past that present an acceptable computational complexity and good approximations of the optimal solution. In this paper we propose a tree-search algorithm that provides the exact ML solution with lower computational complexity than that required by an exhaustive search of minimum distance. Also a two-stage tree-search algorithm is presented based on the idea that the ML solution is in the set of equilibrium points of a Hopfield neural networks (HNN). The two algorithms work without any modification both in underloaded and overloaded (underdetermined) systems. Numerical simulations show that improvements, in terms of computational complexity measured as the average number of required sum and/or products, are encouraging.

Published in:

2009 6th International Symposium on Wireless Communication Systems

Date of Conference:

7-10 Sept. 2009