Cart (Loading....) | Create Account
Close category search window

Joint admission control and antenna assignment for multiclass QoS in spatial multiplexing MIMO wireless networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Niyato, D. ; Sch. of Comput. Eng., Nanyang Technol. Univ. (NTU), Singapore, Singapore ; Hossain, E. ; Dong In Kim

We consider the problem of quality-of-service (QoS) provisioning for multiple traffic classes in a MIMO wireless network. This QoS provisioning is posed as a radio resource management (RRM) problem at a wireless node (e.g., a wireless mesh router) with multiple antennas. We decompose this RRM problem into two tractable subproblems, namely, the antenna assignment and the admission control problems. The objective of antenna assignment is to minimize the weighted packet dropping probability for the different traffic classes under constrained packet delay. The objective of admission control is to maximize the revenue of the wireless node gained from the ongoing connections for different traffic classes under constrained connection blocking probability and average per-connection throughput. The decision of antenna assignment is made in a short-term basis (e.g., for every packet transmission interval) while that of admission control is made in a long-term basis (i.e., when a connection arrives). Constrained Markov decision process (CMDP) models are formulated to obtain the optimal decisions on antenna assignment and admission control. To provide efficient channel utilization, the RRM framework considers adaptive modulation at the physical layer which exploits channel state information. Performance evaluation results show that this joint antenna assignment and admission control framework can provide class-based service differentiation while satisfying both the connection-level and packet-level QoS requirements.

Published in:

Wireless Communications, IEEE Transactions on  (Volume:8 ,  Issue: 9 )

Date of Publication:

September 2009

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.