Cart (Loading....) | Create Account
Close category search window
 

A Novel Bid Optimizer for Sponsored Search Auctions Using Cooperative Game Theory

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)

In this paper, we propose a bid optimizer for sponsored keyword search auctions which leads to better retention of advertisers by yielding attractive utilities to the advertisers without decreasing the revenue to the search engine. The bid optimizer is positioned as a key value added tool the search engine provides to the bidders. The proposed bid optimizer algorithm transforms the reported values of the bidders for a keyword into a correlated bid profile using many ideas from cooperative game theory. The algorithm is based on a characteristic form game involving the search engine and the bidders. Ideas from Nash bargaining theory are used in formulating the characteristic form game to provide for a fair share of surplus among the players involved. The algorithm then computes the nucleolus of the characteristic form game since we find that the nucleolus is an apt way of allocating the gains of cooperation among the search engine and the bidders. The algorithm next transforms the nucleolus into a correlated bid profile using a linear programming formulation. This bid profile is input to a standard generalized second price mechanism (GSP) for determining the allocation of sponsored slots and the prices to be paid by the winners. The correlated bid profile that we determine is a locally envy-free equilibrium and also a correlated equilibrium of the underlying game. Through detailed simulation experiments, we show that the proposed bid optimizer retains more customers than a plain GSP mechanism and also yields better long-run utilities to the search engine and the bidders.

Published in:

Web Intelligence and Intelligent Agent Technologies, 2009. WI-IAT '09. IEEE/WIC/ACM International Joint Conferences on  (Volume:2 )

Date of Conference:

15-18 Sept. 2009

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.