By Topic

MACSIMA: Simulating the Co-evolution of Negotiation Strategies in Agent-Based Supply Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $33
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)

In this paper, we describe the multiagent supply chain simulation framework MACSIMA. This framework allows the design of large-scale supply network topologies consisting of a multitude of autonomous agents representing the companies in the supply network and acting on their behalf. MACSIMA provides all agents with negotiation and learning capabilities so that the co-evolution and adaptation of the price negotiation strategies of the business agents that exchange goods over an electronic B2B-market can be simulated and evaluated. Thereby MACSIMA supports a fine-tuning of the parameterization of the learning mechanism of each individual business agent and additionally enables the agents to exchange information about finished negotiations with other cooperating agents. We outline evaluation results with a first focus on the emergence of niche strategies within a group of cooperating agents. After that we center a second focus on the coordination efficiency, i.e. on the effects of the application of different learning mechanism parameterizations on the overall turnover and profit of supply networks. Our simulation results show that depending on the parameter setting of the learning mechanism the outcome (e.g. the overall turnover) of such a supply network varies significantly.

Published in:

Web Intelligence and Intelligent Agent Technologies, 2009. WI-IAT '09. IEEE/WIC/ACM International Joint Conferences on  (Volume:2 )

Date of Conference:

15-18 Sept. 2009