By Topic

Analysis of failure correlation impact on peer-to-peer storage systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Dalle, O. ; Univ. of Nice - Sophia Antipolis, Sophia Antipolis, France ; Giroire, F. ; Monteiro, J. ; Pérennes, S.

Peer-to-peer storage systems aim to provide a reliable long-term storage at low cost. In such systems, peers fail continuously, hence, the necessity of self-repairing mechanisms to achieve high durability. In this paper, we propose and study analytical models that assess the bandwidth consumption and the probability to lose data of storage systems that use erasure coded redundancy. We show by simulations that the classical stochastic approach found in the literature, that models each block independently, gives a correct approximation of the system average behavior, but fails to capture its variations over time. These variations are caused by the simultaneous loss of multiple data blocks that results from a peer failing (or leaving the system). We then propose a new stochastic model based on a fluid approximation that better captures the system behavior. In addition to its expectation, it gives a correct estimation of its standard deviation. This new model is validated by simulations.

Published in:

Peer-to-Peer Computing, 2009. P2P '09. IEEE Ninth International Conference on

Date of Conference:

9-11 Sept. 2009