By Topic

TABS: Temperature-Aware Layout-Driven Behavioral Synthesis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Krishnan, V. ; Dept. of Comput. Sci. & Eng., Univ. of South Florida, Tampa, FL, USA ; Katkoori, S.

With rising power densities in modern VLSI circuits, thermal effects are becoming important in the design of ICs. Elevated chip temperatures have an adverse impact on performance, reliability, power consumption, and cooling costs. To ensure adequate thermal management, all phases of the design flow must account for thermal effects on their design decisions. We present a two-stage simulated annealing-based high-level synthesis technique that combines power minimization with temperature-aware scheduling, binding, and floorplanning. In our technique, the first stage of the simulated annealing algorithm creates a low-power solution, which is then iteratively improved by the second stage to minimize estimated on-chip peak temperature using accurate module-level temperature estimation. We show that minimizing average power alone does not guarantee minimal peak temperatures. However, our approach consistently finds solutions that have lower on-chip peak temperatures and uniform on-chip temperature distributions, compared to a traditional low-power synthesis methodology that minimizes average power. Experiments show that our method reduces peak temperatures on average by 12% and up to 16%, compared to a traditional low-power synthesis algorithm that minimizes average power. These improvements in chip-level temperature distributions are achieved with a modest increase in chip area of under 15% on average.

Published in:

Very Large Scale Integration (VLSI) Systems, IEEE Transactions on  (Volume:18 ,  Issue: 12 )