By Topic

A 160-Gb/s OTDM Demultiplexer Based on Parametric Wavelength Exchange

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Mengzhe Shen ; Dept. of Electr. & Electron. Eng., Univ. of Hong Kong, Hong Kong, China ; Xing Xu ; Yuk, T.I. ; Wong, Kenneth Kin-Yip

Parametric wavelength exchange (PWE) has been demonstrated as a versatile device in providing different functionalities. In this paper, we will concentrate, numerically and experimentally, on one of these functionalities, namely, all-optical time demultiplexing of 160-Gb/s return-to-zero (RZ) signals based on a pulsed-pump PWE in a 400 m highly nonlinear dispersion-shifted fiber. Experimental results show power penalties les 2.7 dB at bit-error rate of 10-9 for all demultiplexed 10-Gb/s RZ signals. We also derive theoretical expressions for the conversion/residual efficiencies and investigate the impact of pump pulse width and phase mismatch on these efficiencies. Furthermore, the impacts of pulsed-pump wavelength and power level on the characteristics of the switching window are investigated numerically. As a result, the demultiplexer can be easily upgraded to an add-drop multiplexer because of the complete exchange nature of PWE, which is justified by the surviving channels' waveform performance.

Published in:

Quantum Electronics, IEEE Journal of  (Volume:45 ,  Issue: 11 )