Cart (Loading....) | Create Account
Close category search window
 

An Online Self-Tunable Method to Denoise CGM Sensor Data

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Facchinetti, A. ; Dept. of Inf. Eng., Univ. of Padova, Padova, Italy ; Sparacino, G. ; Cobelli, C.

Continuous glucose monitoring (CGM) devices can be very useful in diabetes management. Unfortunately, their use in online applications, e.g., for hypo/hyperalert generation, is made difficult by random noise measurement. Remarkably, the SNR of CGM data varies with the sensor and with the individual. As a consequence, approaches in which filter parameters are not allowed to adapt to the current SNR are likely to be suboptimal. In this paper, we present a new online methodology to reduce noise in CGM signals by a Kalman filter (KF), whose unknown parameters are adjusted in a given individual by a stochastically based smoothing criterion exploiting data of a burn-in interval. The performance of the new KF approach is quantitatively assessed on Monte Carlo simulations and 24 real CGM datasets. Our results are compared with those obtained by a moving-average (MA) filtering approach with fixed parameters currently in use in likely all commercial CGM devices. Results show that the new KF approach performs much better than MA. For instance, on real data, for comparable signal denoising, the delay introduced by KF is about 35% less than that obtained by MA.

Published in:

Biomedical Engineering, IEEE Transactions on  (Volume:57 ,  Issue: 3 )

Date of Publication:

March 2010

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.