Cart (Loading....) | Create Account
Close category search window
 

Continuum Models Incorporating Surface Energy for Static and Dynamic Response of Nanoscale Beams

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Chang Liu ; Dept. of Mech. Eng., Univ. of British Columbia, Vancouver, BC, Canada ; Rajapakse, R.K.N.D.

Nanoscale beams are commonly found in nanomechanical and nanoelectromechanical systems (NEMS) and other nanotechnology-based devices. Surface energy has a significant effect on nanoscale structures and is associated with their size-dependent behavior. In this paper, a general mechanistic model based on the Gurtin-Murdoch continuum theory accounting for surface energy effects is presented to analyze thick and thin nanoscale beams with an arbitrary cross section. The main contributions of this paper are a set of closed-form analytical solutions for the static response of thin and thick beams under different loading (point and uniformly distributed) and boundary conditions (simply-supported, cantilevered, and clamped ends), as well as the solution of the free vibration characteristics of such beams. Selected numerical results are presented for aluminum and silicon beams to demonstrate their salient response features. It is shown that classical beam theory is not accurate in situations where the surface residual stress and/or surface elastic constants are relatively large. An intrinsic length scale for beams is identified that depends on beam surface properties and cross-sectional shape. The present work provides a convenient set of analytical tools for researchers working on NEMS design and fabrication to understand the static and dynamic behavior of nanoscale beams including their size-dependent behavior and the effects of common boundary conditions.

Published in:

Nanotechnology, IEEE Transactions on  (Volume:9 ,  Issue: 4 )

Date of Publication:

July 2010

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.