By Topic

Enhanced Electromagnetic Interference Shielding Through the Use of Functionalized Carbon-Nanotube-Reactive Polymer Composites

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Sung-Hoon Park ; Dept. of Mech. & Aerosp. Eng., Univ. of California at San Diego, San Diego, CA, USA ; Theilmann, P.T. ; Asbeck, P.M. ; Bandaru, Prabhakar R.

We report on a new principle yielding enhanced electromagnetic shielding, using as an example a composite comprised of carbon nanotubes (CNTs) integrated with a reactive ethylene terpolymer (RET). Such composites were synthesized through the chemical reaction of the functional groups on the CNT with the epoxy linkage of the RET polymer. The main advantages of these composites include good dispersion with low electrical percolation volume fractions (~0.1 volume%), yielding outstanding microwave shielding efficiency for electromagnetic interference applications. The shielding effectiveness was characterized for both single-walled and multiwalled CNT-based composites and was much enhanced in the former. The specific roles of absorption and reflection in determining the total shielding, as a function of the nanotube filling fraction, is also discussed.

Published in:

Nanotechnology, IEEE Transactions on  (Volume:9 ,  Issue: 4 )