By Topic

A 50-Gb/s 10-mW Analog Equalizer Using Transformer Feedback Technique in 65-nm CMOS Technology

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Jian-Hao Lu ; Dept. of Electr. Eng., Nat. Taiwan Univ., Taipei, Taiwan ; Shen-Iuan Liu

A 50-Gb/s low-power analog equalizer has been realized in 65-nm CMOS technology. This equalizer adopts the proposed transformer feedback technique to achieve a peaking gain of 18 dB at 25 GHz and low-power dissipation. The whole equalizer without the output buffer consumes 10 mW from a 1-V supply. The chip occupies 0.35 times 0.27 mm2. For a 50-Gb/s pseudorandom bit sequence of 27 - 1 , the measured bit error rate is less than 10-12, and the measured maximum root-mean-square and peak-to-peak jitters are 2.7 and 12.4 ps, respectively.

Published in:

Circuits and Systems II: Express Briefs, IEEE Transactions on  (Volume:56 ,  Issue: 10 )