By Topic

Design of a Novel Efficient Human–Computer Interface: An Electrooculagram Based Virtual Keyboard

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Usakli, A.B. ; Tech. Sci. Dept., NCO Acad., Balkesir, Turkey ; Gurkan, S.

The aim of this paper is to present the design and application of an electrooculogram (EOG) based on an efficient human-computer interface (HCI). Establishing an alternative channel without speaking and hand movements is important in increasing the quality of life for the handicapped. EOG-based systems are more efficient than electroencephalogram (EEG)-based systems in some cases. By using a realized virtual keyboard, it is possible to notify in writing the needs of the patient in a relatively short time. Considering the biopotential measurement pitfalls, the novel EOG-based HCI system allows people to successfully communicate with their environment by using only eye movements. Classifying horizontal and vertical EOG channel signals in an efficient interface is realized in this study. The new system is microcontroller based, with a common-mode rejection ratio of 88 dB, an electronic noise of 0.6 μV (p-p), and a sampling rate of 176 Hz. The nearest neighborhood algorithm is used to classify the signals, and the classification performance is 95%. The novel EOG-based HCI system allows people to successfully and economically communicate with their environment by using only eye movements.

Published in:

Instrumentation and Measurement, IEEE Transactions on  (Volume:59 ,  Issue: 8 )