Cart (Loading....) | Create Account
Close category search window
 

Efficient Relighting of RBF-Based Illumination Adjustable Images

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Tze-Yiu Ho ; Dept. of Electron. Eng., City Univ. of Hong Kong, Kowloon, China ; Chi Sing Leung ; Ping-Man Lam ; Tien-Tsin Wong

An illumination adjustable image (IAI) contains a large number of prerecorded images under various light directions. Relighting a scene under complicated lighting conditions can be achieved from the IAI. Using the radial basis function (RBF) approach to represent an IAI is proven to be more efficient than using the spherical harmonic approach. However, to represent high-frequency lighting effects, we need to use many RBFs. Hence, the relighting speed could be very slow. This brief investigates a partial reconstruction scheme for relighting an IAI based on the locality of RBFs. Compared with the conventional RBF and spherical harmonics (SH) approaches, the proposed scheme has a much faster relighting speed under the similar distortion performance.

Published in:

Neural Networks, IEEE Transactions on  (Volume:20 ,  Issue: 12 )

Date of Publication:

Dec. 2009

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.