By Topic

Estimating Regions of Asymptotic Stability of Power Electronics Systems Using Genetic Algorithms

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Loop, B.P. ; PC Krause & Assoc., West Lafayette, IN, USA ; Sudhoff, S.D. ; Zak, S.H. ; Zivi, E.L.

Electric power distribution systems composed of power electronics converters are susceptible to instabilities under certain conditions. Small-signal impedance approaches to stability analysis are incapable of predicting large-signal stability properties. Herein, a practical and scalable genetic algorithm based procedure for the estimation of regions of asymptotic stability of power electronics systems is proposed. The procedure is demonstrated on six nonlinear models that range from 6 to 75 state variables. The models represent the dynamics of Naval power electronics-based system components and systems.

Published in:

Control Systems Technology, IEEE Transactions on  (Volume:18 ,  Issue: 5 )