By Topic

Principle Hessian Direction-Based Parameter Reduction for Interconnect Networks With Process Variation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Mitev, A. ; Univ. of Arizona at Tucson, Tucson, AZ, USA ; Marefat, M. ; Dongsheng Ma ; Wang, J.M.

As CMOS technology enters the nanometer regime, the increasing process variation is bringing manifest impact on circuit performance. To accurately consider both global and local process variations, a large number of random variables (or parameters) have to be incorporated into circuit models. This in turn raises the complexity of the circuit models. In this paper, we propose a principle Hessian direction-based parameter-reduction approach. This new approach relies on the impact of each parameter on circuit performance to decide whether keeping or reducing the parameter. Compared with the existing principle component analysis method, this performance based property provides us a significantly smaller set of parameters after reduction. The experimental results also support our conclusions. In interconnect cases, the proposed method reduces 70% of parameters. In some cases, for example, the mesh circuit in the current paper, the new approach leads to an 85% reduction. We also tested ISCAS benchmarks. In all cases, an average of 53% of reduction is observed with less than 3% error in the mean value and less than 8% error in the variation.

Published in:

Very Large Scale Integration (VLSI) Systems, IEEE Transactions on  (Volume:18 ,  Issue: 9 )