By Topic

Bilateral Teleoperation of Multiple Mobile Agents: Coordinated Motion and Collision Avoidance

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Rodríguez-Seda, E.J. ; Coordinated Sci. Lab., Univ. of Illinois, Urbana, IL, USA ; Troy, J.J. ; Erignac, C.A. ; Murray, P.
more authors

This paper presents theoretical and experimental results on bilateral teleoperation of multiple mobile slave agents coupled to a single master robot. We first design a passifying proportional-derivative (PD) controller to enforce motion tracking and formation control of master and slave vehicles under constant, bounded communication delays. Then, we incorporate avoidance functions to guarantee collision-free transit through obstructed spaces. The unified control framework is validated by experiments with two coaxial helicopters as slave agents and a haptic device as the master robot.

Published in:

Control Systems Technology, IEEE Transactions on  (Volume:18 ,  Issue: 4 )