By Topic

Heuristic Approaches for the Quartet Method of Hierarchical Clustering

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)

Given a set of objects and their pairwise distances, we wish to determine a visual representation of the data. We use the quartet paradigm to compute a hierarchy of clusters of the objects. The method is based on an NP-hard graph optimization problem called the Minimum Quartet Tree Cost problem. This paper presents and compares several heuristic approaches to approximate the optimal hierarchy. The performance of the algorithms is tested through extensive computational experiments and it is shown that the Reduced Variable Neighborhood Search heuristic is the most effective approach to the problem, obtaining high-quality solutions in short computational running times.

Published in:

Knowledge and Data Engineering, IEEE Transactions on  (Volume:22 ,  Issue: 10 )