By Topic

Chaos theory based detection against network mimicking DDoS attacks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Ashley Chonka ; Deakin University ; Jaipal Singh ; Wanlei Zhou

DDoS attack traffic is difficult to differentiate from legitimate network traffic during transit from the attacker, or zombies, to the victim. In this paper, we use the theory of network self-similarity to differentiate DDoS flooding attack traffic from legitimate self-similar traffic in the network. We observed that DDoS traffic causes a strange attractor to develop in the pattern of network traffic. From this observation, we developed a neural network detector trained by our DDoS prediction algorithm. Our preliminary experiments and analysis indicate that our proposed chaotic model can accurately and effectively detect DDoS attack traffic. Our approach has the potential to not only detect attack traffic during transit, but to also filter it.

Published in:

IEEE Communications Letters  (Volume:13 ,  Issue: 9 )