Scheduled System Maintenance:
On Wednesday, July 29th, IEEE Xplore will undergo scheduled maintenance from 7:00-9:00 AM ET (11:00-13:00 UTC). During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

Multipath combining scheme in single-carrier transmission systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Jieling Wang ; State Key Labs. of Integrated Services Networks, Xidian Univ., Xi''an, China ; Hong Yang ; Kechu Yi

In this letter, we introduce and investigate the RAKE combining receiver which is widely used in the code-division multiple access (CDMA) systems to the non-spectrum-spreading single-carrier transmission system. The initial estimate of the transmitted data is obtained by linear single-carrier equalizers, and then all the multipath signals are constructed from this initial solution and channel impulse response. By interference cancellation (IC) technique, we can acquire every multipath component in the received signal after cancelling the sum of all the other multipath signals constructed. Finally, all the components are combined together using selection combining (SC), equal gain combining (EGC) or maximal ratio combining (MRC), so that temporal diversity gain from the combined output can be obtained. Simulation results show that bit error rate (BER) performance of the new combining receiver based on zero forcing (ZF) and minimum mean square error (MMSE) equalizers can achieve the SNR gain dramatically in the SUI-5 wireless communication link.

Published in:

Communications Letters, IEEE  (Volume:13 ,  Issue: 9 )