By Topic

Attenuation and reflection of radio waves by a melting layer of precipitation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $33
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
W. Klaassen ; Dept. of Electr. Eng., Delft Univ. of Technol., Netherlands

Attenuation and reflection of a melting layer are calculated using a meteorological model. The model employs a new scheme for the calculation of the dielectric properties of melting ice particles with densities ranging from those of loose snow to hail, and a new scheme for calculating the melting rate is employed. The input parameters are derived from high resolution Doppler radar data and provide a data set for statistical analysis. Statistical relations were derived for attenuation in the melting layer based on measurements made with a surface rain gauge, a radar (with and without a polarisation facility), and a lower frequency satellite link. It was found that the specific attenuation of melting snow surpasses the value of rain because of the larger size and particle number density during melting, the attenuation within the melting layer increasing with its reflection. In stratiform precipitation, the attenuation in the melting layer is found to increase only slightly with frequency. The reflection in the melting layer decreases with the frequency of the radio waves in such a way that a bright band is only observed for frequencies below 20 GHz.<>

Published in:

IEE Proceedings H - Microwaves, Antennas and Propagation  (Volume:137 ,  Issue: 1 )