By Topic

Optimal SVC placement in electric power systems using a genetic algorithms based method

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
I. Pisica ; Electric Power Systems Department, Power Engineering Faculty, University ¿Politehnica¿ of Bucharest, Romania ; C. Bulac ; L. Toma ; M. Eremia

The problem of improving the voltage profile and reducing power losses in electrical networks is a task that must be solved in an optimal manner. At present time, this optimality can be achieved by efficient usage of existing facilities alongside with installing FACTS devices. The static VAr compensator (SVC) was chosen for study as its maturity and acceptable costs make it more usable in practical applications than other FACTS devices This paper proposes a genetic algorithm that tries to identify the optimal location and size of an SVC. A multi-criteria function is developed, comprising of both operational objectives and investment costs. The computer program is run on a 13 nodes test system, assessing improvements in voltage profile and reducing power losses. The purpose of this study is to validate the solution method in order for it to be adapted for systems of higher dimensionality.

Published in:

PowerTech, 2009 IEEE Bucharest

Date of Conference:

June 28 2009-July 2 2009