By Topic

Chunk-based resource allocation in OFDMA systems - part I: chunk allocation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Huiling Zhu ; Dept. of Electron., Univ. of Kent, Canterbury, UK ; Jiangzhou Wang

In this paper, throughput performance analysis of the chunk-based subcarrier allocation is presented by considering the average bit-error-rate (BER) constraint over a chunk in downlink multiuser orthogonal frequency division multiplexing (OFDM) transmission. The outage probabilities per subcarrier are compared between the average BER-constraint based chunk allocation and the average signal-to-noise-ratio (SNR) based chunk allocation. The effects of system parameters, such as the number of users, the number of subcarriers per chunk, and the coherence bandwidth, are evaluated. The numerical results show that, when the chunk bandwidth is smaller than the coherence bandwidth, the average downlink throughput of the chunk-based subcarrier allocation is very close to that of the single-subcarrier-based allocation. When the number of users is small, the average throughput increases dramatically with increasing the number of users due to multiuser diversity, whereas when the number of users is large, the multiuser diversity gain is saturated. The effective throughput of the average BER-constraint based chunk allocation is higher than that of the average SNR based chunk allocation, especially when the number of users is large or when the ratio of the chunk bandwidth to the coherence bandwidth is large.

Published in:

Communications, IEEE Transactions on  (Volume:57 ,  Issue: 9 )