Scheduled System Maintenance:
Some services will be unavailable Sunday, March 29th through Monday, March 30th. We apologize for the inconvenience.
By Topic

Multiple access algorithms without feedback using combinatorial designs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

The purchase and pricing options are temporarily unavailable. Please try again later.
3 Author(s)
Peeters, G.T. ; IBBT, Univ. of Antwerp, Antwerp, Belgium ; Bocklandt, R. ; Van Houdt, B.

A new class of multiple access algorithms for systems without feedback is introduced and analyzed. A finite population of users is assumed, where each user transmits a packet R times within the next N time slots (and all packets have an equal length of one slot). To improve the performance achieved by randomly selecting these R slots, user codes are invoked such that any two users will only transmit simultaneously in at most one slot, i.e., 2-(N, R, 1) designs. We argue that in most cases, the set of user codes can be generated easily using cyclic designs and provide a method to select T user codes from the set of user codes SN,R in case the user population consists of T < |SN,R| users. We further demonstrate how larger populations, with T > |SN,R|, can still benefit from these user codes in two different manners. Closed formulas that express the success probability of a packet are provided for all population setups. Finally, a comparison with the random selection strategy demonstrates the performance gain realized by the new multiple access algorithms and some engineering rules to optimize the performance are provided.

Published in:

Communications, IEEE Transactions on  (Volume:57 ,  Issue: 9 )